Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Whole-brain functional magnetic resonance imaging (fMRI), in conjunction with multiband acceleration, has played an important role in mapping the functional connectivity throughout the entire brain with both high temporal and spatial resolution. Ultrahigh magnetic field strengths (7T and above) allow functional imaging with even higher functional contrast-to-noise ratios for improved spatial resolution and specificity compared to traditional field strengths (1.5T and 3T). High-resolution 7T fMRI, however, has primarily been constrained to smaller brain regions given the amount of time it takes to acquire the number of slices necessary for high resolution whole brain imaging. Here we evaluate a range of whole-brain high-resolution resting state fMRI protocols (0.9, 1.25, 1.5, 1.6 and 2mm isotropic voxels) at 7T, obtained with both in-plane and slice acceleration parallel imaging techniques to maintain the temporal resolution and brain coverage typically acquired at 3T. Using the processing pipeline developed by the Human Connectome Project, we demonstrate that high resolution images acquired at 7T provide increased functional contrast to noise ratios with significantly less partial volume effects and more distinct spatial features, potentially allowing for robust individual subject parcellations and descriptions of fine-scaled patterns, such as visuotopic organization.

Original publication




Journal article



Publication Date





23 - 32


7T, Connectome, High-resolution, Resting state, Whole brain, fMRI, Connectome, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging