Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Developmental stress can have organizational effects on suites of physiological, morphological, and behavioral characteristics. In lizards, incubation temperature is perhaps the most significant environmental variable affecting embryonic development. Wall lizards (Podarcis muralis) recently introduced by humans from Italy to England experience stressfully cool incubation conditions, which we here show reduce growth and increase the incidence of scale malformations. Using a methylation-sensitive AFLP protocol optimized for vertebrates, we demonstrate that this low incubation temperature also causes hypomethylation of DNA in brain tissue. A consistent pattern across methylation-susceptible AFLP loci suggests that hypomethylation is a general response and not limited to certain CpG sites. The functional consequences of hypomethylation are unknown, but it could contribute to genome stability and regulation of gene expression. Further studies of the effects of incubation temperature on DNA methylation in ectotherm vertebrates may reveal mechanisms that explain why the embryonic thermal environment often has physiological and behavioral consequences for offspring.

Original publication

DOI

10.1002/jez.2024

Type

Journal article

Journal

J Exp Zool A Ecol Genet Physiol

Publication Date

07/2016

Volume

325

Pages

390 - 395

Keywords

Animals, Body Size, Brain, DNA Methylation, Lizards, Models, Biological, Random Allocation, Stress, Physiological, Temperature