Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Dense genotyping approaches have revealed much about the genetic architecture both of gene expression and disease susceptibility. However, assigning causality to genetic variants associated with a transcriptomic or phenotypic trait presents a far greater challenge. The development of epigenomic resources by ENCODE, the Epigenomic Roadmap and others has led to strategies that seek to infer the likely functional variants underlying these genome-wide association signals. It is known, for example, that such variants tend to be located within areas of open chromatin, as detected by techniques such as DNase-seq and FAIRE-seq. We aimed to assess what proportion of variants associated with phenotypic or transcriptomic traits in the human brain are located within transcription factor binding sites. The bioinformatic tools, Wellington and HINT, were used to infer transcription factor footprints from existing DNase-seq data derived from central nervous system tissues with high spatial resolution. This dataset was then employed to assess the likely contribution of altered transcription factor binding to both expression quantitative trait loci (eQTL) and genome-wide association study (GWAS) signals. Surprisingly, we show that most haplotypes associated with GWAS or eQTL phenotypes are located outside of DNase-seq footprints. This could imply that DNase-seq footprinting is too insensitive an approach to identify a large proportion of true transcription factor binding sites. Importantly, this suggests that prioritising variants for genome engineering studies to establish causality will continue to be frustrated by an inability of footprinting to identify the causative variant within a haplotype.

Original publication

DOI

10.1093/hmg/ddw369

Type

Journal article

Journal

Hum Mol Genet

Publication Date

01/01/2017

Volume

26

Pages

79 - 89

Keywords

Binding Sites, Brain, Brain Diseases, Chromatin, Chromatin Immunoprecipitation, Computational Biology, DNA Footprinting, Databases, Factual, Deoxyribonuclease I, Gene Expression Regulation, Genetic Variation, Genome, Human, Genome-Wide Association Study, Genotype, Haplotypes, High-Throughput Nucleotide Sequencing, Humans, Molecular Sequence Annotation, Phenotype, Protein Binding, Quantitative Trait Loci, Sequence Analysis, DNA, Transcription Factors