Reduced heat resistance of mutant spores after cloning and mutagenesis of the Bacillus subtilis gene encoding penicillin-binding protein 5.
Todd JA., Roberts AN., Johnstone K., Piggot PJ., Winter G., Ellar DJ.
Part of the gene encoding penicillin-binding protein 5 from Bacillus subtilis 168 was cloned in Escherichia coli with a synthetic oligonucleotide as a hybridization probe. The gene was designated dacA by analogy with E. coli. The nucleotide sequence was determined, and the predicted molecular mass was 45,594 daltons (412 amino acids). A comparison of the predicted amino acid sequence with that of the E. coli penicillin-binding protein 5 indicated that these enzymes showed about 25% identity. The B. subtilis dacA gene was mutated by integration of a plasmid into the structural gene by homologous recombination. A comparison of the mutant and control strains revealed that (i) the mutant lacked detectable penicillin-binding protein 5, (ii) the D-alanine carboxypeptidase activity of membranes isolated from the mutant was only 5% of that measured in membranes from the control strain, (iii) the mutant cells showed apparently normal morphology only during exponential growth, and after the end of exponential phase the cells became progressively shorter, (iv) the mutant sporulated normally except that the forespore occupied about two-thirds of the mother cell cytoplasm and, during its development, migrated towards the center of the mother cell, and (v) purified mutant spores were 10-fold less heat resistant but possessed normal refractility and morphology. Preliminary chemical analysis indicated that the structure of the cortex of the mutant was different.