Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have analysed HLA class II gene-based substructure of the Sardinian population in order to evaluate the possible influence of this parameter in the mapping of common disease loci using association methods. We first examined the distribution of the HLA-DRB1-DQA1-DQB1 haplotypes in 631 newborns from seven different regions of the island, and found that the most frequent haplotypes were uniformly distributed in all regions, but at frequencies unique to Sardinia. Other haplotypes, common in other white European populations, are consistently rare or absent across the whole island. Analysis of molecular variance (AMOVA) showed a very low degree of genetic differentiation between the coastal regions, which have suffered repeated invasions over many years, and the most internal and isolated part of the island. This suggests that there has been little genetic flow from the various populations that have invaded the island during the last 3000 years and that Sardinia is a relatively homogeneous population. The validity of these unrelated control HLA haplotype frequencies and our claim of homogeneity were established by demonstrating the near identity of the affected family-based control (AFBAC) HLA haplotype frequencies in 243 type 1 diabetes and 495 multiple sclerosis families from Sardinia and those of the unrelated controls. These results indicate that robust case-control studies can be carried out in Sardinia offering cost efficiency over certain family-based designs.

Original publication




Journal article


Hum Mol Genet

Publication Date





2959 - 2965


Alleles, Case-Control Studies, Diabetes Mellitus, Type 1, Female, Genetic Heterogeneity, Haplotypes, Histocompatibility Antigens Class II, Humans, Italy, Male, Multiple Sclerosis