Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Type 1 diabetes is a common autoimmune disorder that is strongly clustered in families. As the sharing of alleles of the HLA class II genes cannot explain all of this aggregation, alleles of multiple other loci are involved. Recently, it was reported that an A/G splice-site single nucleotide polymorphism (SNP; rs10774671) in the OAS1 gene, encoding 2'5'-oligoadenylate synthetase, was associated with a protective effect against type 1 diabetes in unaffected siblings, and yet affected siblings showed random transmission. Since this finding is difficult to explain biologically, we genotyped the OAS1 SNP in 1,552 type 1 diabetic families from the U.K., U.S., Romania, and Norway and in 4,287 type 1 diabetic cases and 4,735 control subjects from the U.K. We found no evidence of association in either unaffected (relative risk 1.00; P = 0.94) or affected (1.00; P = 0.96) siblings or in the case-control study (odds ratio 0.99; P = 0.83). These results suggest that additional evidence of association of a low penetrance effect in common disease should be sought when the primary result comes from unaffected siblings in the absence of any effect in cases.

Original publication

DOI

10.2337/db05-1452

Type

Journal article

Journal

Diabetes

Publication Date

05/2006

Volume

55

Pages

1525 - 1528

Keywords

2',5'-Oligoadenylate Synthetase, Alternative Splicing, Case-Control Studies, Diabetes Mellitus, Type 1, Europe, European Continental Ancestry Group, Gene Frequency, Genotype, Humans, Nuclear Family, Odds Ratio, Polymorphism, Single Nucleotide, Regression Analysis, Risk, Siblings