Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Reactive oxygen species (ROS) production increases in plants under stress. ROS can damage cellular components, but they can also act in signal transduction to help the cell counteract the oxidative damage in the stressed compartment. H(2)O(2) might induce a general stress response, but it does not have the required specificity to selectively regulate nuclear genes required for dealing with localized stress, e.g. in chloroplasts or mitochondria. Here we argue that peptides deriving from proteolytic breakdown of oxidatively damaged proteins have the requisite specificity to act as secondary ROS messengers and regulate source-specific genes and in this way contribute to retrograde ROS signalling during oxidative stress. Likewise, unmodified peptides deriving from the breakdown of redundant proteins could help coordinate organellar and nuclear gene expression.

Original publication

DOI

10.1016/j.tplants.2010.04.008

Type

Journal article

Journal

Trends Plant Sci

Publication Date

07/2010

Volume

15

Pages

370 - 374

Keywords

Chloroplasts, Mitochondria, Oxidative Stress, Proteins, Reactive Oxygen Species, Signal Transduction