Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Choline is a quaternary amino cationic organic alcohol that is oxidized to betaine in liver and kidney mitochondria. Betaine acts as an intracellular organic osmolyte in the medulla of the kidney. Evidence is provided that kidney mitochondria have a choline transporter in their inner membrane. The transporter has a Km of 173+/-64 microM and a Vmax of 0.4+/-0.1 nmol/min/mg mitochondrial protein (at 10 degrees C). Uptake of choline is not coupled to betaine efflux. Transporter activity demonstrates a dependence on membrane potential and choline transport is inhibited by hemicholinium-3. Steady-state oxygen consumption due to choline oxidation in kidney mitochondria was measurable at 37 degrees C (125+/-6 pmol O2/min/mg mitochondrial protein), in the absence of other mitochondrial electron transport chain substrates and the choline transporter was shown to be the major site of control (96+/-4%) over choline oxidation flux in isolated kidney mitochondria. We conclude that the choline transporter in rat kidney mitochondria is the major site of control over the production of the organic osmolyte, betaine.

Original publication




Journal article


Biochim Biophys Acta

Publication Date





1135 - 1139


Animals, Betaine, Choline, Chromatography, Thin Layer, Female, Kidney, Membrane Potential, Mitochondrial, Mitochondria, Oxidation-Reduction, Rats, Rats, Wistar