Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Trials run in either rare diseases, such as rare cancers, or rare sub-populations of common diseases are challenging in terms of identifying, recruiting and treating sufficient patients in a sensible period. Treatments for rare diseases are often designed for other disease areas and then later proposed as possible treatments for the rare disease after initial phase I testing is complete. To ensure the trial is in the best interests of the patient participants, frequent interim analyses are needed to force the trial to stop promptly if the treatment is futile or toxic. These non-definitive phase II trials should also be stopped for efficacy to accelerate research progress if the treatment proves to be particularly promising. In this paper, we review frequentist and Bayesian methods that have been adapted to incorporate two binary endpoints and frequent interim analyses. The Eurosarc Trial of Linsitinib in advanced Ewing Sarcoma (LINES) is used as a motivating example and provides a suitable platform to compare these approaches. The Bayesian approach provides greater design flexibility, but does not provide additional value over the frequentist approaches in a single trial setting when the prior is non-informative. However, Bayesian designs are able to borrow from any previous experience, using prior information to improve efficiency.

Original publication

DOI

10.1177/0962280216662070

Type

Journal article

Journal

Stat Methods Med Res

Publication Date

01/01/2016

Keywords

Bayesian clinical trial, early stopping, multiple endpoints, phase II; multi-stage design