Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The transition from brief interictal to prolonged seizure, or 'ictal', activity is a crucial event in epilepsy. In vitro slice models can mimic many phenomena observed in the electroencephalogram of patients, including transition from interictal to ictaform or seizure-like activity. In field potential recordings, three discharge types can be distinguished: (1) primary discharges making up the typical interictal burst, (2) secondary bursts, lasting several hundred milliseconds, and (3) tertiary discharges lasting for seconds, constituting the ictal series of bursts. The roles of chemical synapses in these classes of burst have been explored in detail. Here we test the hypothesis that gap junctions are necessary for the generation of secondary bursts. In rat hippocampal slices, epileptiform activity was induced by exposure to 0-Mg(2+). Epileptiform discharges started in the CA3 subfield, and generally consisted of primary discharges followed by 4-13 secondary bursts. Three drugs that block gap junctions, halothane (5-10 mM), carbenoxolone (100 microM) and octanol (0.2-1.0 mM), abolished the secondary discharges, but left the primary bursts intact. The gap junction opener trimethylamine (10 mM) reversibly induced secondary and tertiary discharges. None of these agents altered intrinsic or synaptic properties of CA3 pyramidal cells at the doses used. Surgically isolating the CA3 subfield made secondary discharges disappear, and trimethylamine under these conditions was able to restore them.We conclude that gap junctions can contribute to the prolongation of epileptiform discharges.


Journal article



Publication Date





579 - 587


Action Potentials, Anesthetics, Inhalation, Animals, Anti-Ulcer Agents, Carbenoxolone, Cell Communication, Disease Models, Animal, Epilepsy, Excitatory Postsynaptic Potentials, Gap Junctions, Halothane, Hippocampus, Magnesium, Magnesium Deficiency, Male, Methylamines, Octanols, Organ Culture Techniques, Pyramidal Cells, Rats, Rats, Sprague-Dawley, Synaptic Transmission