Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Characterization of homoeallelic base-identity in allopolyploids is difficult since homeologous subgenomes are closely related and becomes further challenging if diploid-progenitor data is missing. We present HANDS2, a next-generation sequencing-based tool that enables highly accurate (>90%) genome-wide discovery of homeolog-specific base-identity in allopolyploids even in the absence of a diploid-progenitor. We applied HANDS2 to the transcriptomes of various cruciferous plants belonging to genus Brassica. Our results suggest that the three C genomes in Brassica are more similar to each other than the three A genomes, and provide important insights into the relationships between various Brassica tetraploids and their diploid-progenitors at a single-base resolution.

Original publication

DOI

10.1038/srep29234

Type

Journal article

Journal

Sci Rep

Publication Date

05/07/2016

Volume

6

Keywords

Alleles, Brassica, Computational Biology, Evolution, Molecular, Genes, Plant, Genome, Plant, High-Throughput Nucleotide Sequencing, Polyploidy