Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Here, we analyse the energetics, performance and optimization of flight in a moving atmosphere. We begin by deriving a succinct expression describing all of the mechanical energy flows associated with gliding, dynamic soaring and thermal soaring, which we use to explore the optimization of gliding in an arbitrary wind. We use this optimization to revisit the classical theory of the glide polar, which we expand upon in two significant ways. First, we compare the predictions of the glide polar for different species under the various published models. Second, we derive a glide optimization chart that maps every combination of headwind and updraft speed to the unique combination of airspeed and inertial sink rate at which the aerodynamic cost of transport is expected to be minimized. With these theoretical tools in hand, we test their predictions using empirical data collected from a captive steppe eagle (Aquila nipalensis) carrying an inertial measurement unit, global positioning system, barometer and pitot tube. We show that the bird adjusts airspeed in relation to headwind speed as expected if it were seeking to minimize its aerodynamic cost of transport, but find only weak evidence to suggest that it adjusts airspeed similarly in response to updrafts during straight and interthermal glides.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

Original publication

DOI

10.1098/rstb.2015.0398

Type

Journal article

Journal

Philos Trans R Soc Lond B Biol Sci

Publication Date

26/09/2016

Volume

371

Keywords

dynamic soaring, flight performance, gliding, static soaring, wind drift, wing morphing, Air Movements, Animals, Atmosphere, Biomechanical Phenomena, Birds, Eagles, Energy Metabolism, Flight, Animal, Male, Models, Biological, Wales