Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The TREK subfamily of two-pore domain (K2P) K(+) channels exhibit polymodal gating by a wide range of physical and chemical stimuli. Crystal structures now exist for these channels in two main states referred to as the "up" and "down" conformations. However, recent studies have resulted in contradictory and mutually exclusive conclusions about the functional (i.e., conductive) status of these two conformations. To address this problem, we have used the state-dependent TREK-2 inhibitor norfluoxetine that can only bind to the down state, thereby allowing us to distinguish between these two conformations when activated by different stimuli. Our results reconcile these previously contradictory gating models by demonstrating that activation by pressure, temperature, voltage, and pH produce more than one structurally distinct open state and reveal that channel activation does not simply involve switching between the up and down conformations. These results also highlight the diversity of structural mechanisms that K2P channels use to integrate polymodal gating signals.

Original publication

DOI

10.1085/jgp.201611601

Type

Journal article

Journal

J Gen Physiol

Publication Date

06/2016

Volume

147

Pages

497 - 505

Keywords

Animals, Humans, Ion Channel Gating, Potassium Channels, Tandem Pore Domain, Xenopus