Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The majority of lysosomal enzymes are targeted to the lysosome by post-translational tagging with N-glycans terminating in mannose-6-phosphate (M6P) residues. Some current enzyme replacement therapies (ERTs) for lysosomal storage disorders are limited in their efficacy by the extent to which the recombinant enzymes bear the M6P-terminated glycans required for effective trafficking. Chemical synthesis was combined with endo-β-N-acetylglucosaminidase (ENGase) catalysis to allow the convergent synthesis of glycosyl amino acids bearing M6P residues. This approach can be extended to the remodeling of proteins, as exemplified by RNase. The powerful synergy of chemical synthesis and ENGase-mediated biocatalysis enabled the first synthesis of a glycoprotein bearing M6P-terminated N-glycans in which the glycans are attached to the peptide backbone by entirely natural linkages.

Original publication




Journal article


Angew Chem Int Ed Engl

Publication Date





5058 - 5061


ENGase, N-glycans, carbohydrates, glycoproteins, mannose-6-phosphate, Acetylglucosaminidase, Carbohydrate Sequence, Glycoproteins, Phosphorylation