Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Many bacterial species swim by employing ion-driven molecular motors that power the rotation of helical filaments. Signals are transmitted to the motor from the external environment via the chemotaxis pathway. In bidirectional motors, the binding of phosphorylated CheY (CheY-P) to the motor is presumed to instigate conformational changes that result in a different rotor-stator interface, resulting in rotation in the alternative direction. Controlling when this switch occurs enables bacteria to accumulate in areas favorable for their survival. Unlike most species that swim with bidirectional motors, Rhodobacter sphaeroides employs a single stop-start flagellar motor. Here, we asked, how does the binding of CheY-P stop the motor in R. sphaeroides--using a clutch or a brake? By applying external force with viscous flow or optical tweezers, we show that the R. sphaeroides motor is stopped using a brake. The motor stops at 27-28 discrete angles, locked in place by a relatively high torque, approximately 2-3 times its stall torque.

Original publication

DOI

10.1073/pnas.0813164106

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

14/07/2009

Volume

106

Pages

11582 - 11587

Keywords

Bacterial Proteins, Biomechanical Phenomena, Chemotaxis, Flagella, Membrane Proteins, Methyl-Accepting Chemotaxis Proteins, Molecular Motor Proteins, Rhodobacter sphaeroides, Torque