Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Enzymes catalyze reactions with exceptional selectivity and rate acceleration but are often limited by instability. Towards a generic route to thermo-resilience, we established the SpyRing approach, cyclizing enzymes by sandwiching between SpyTag and SpyCatcher (peptide and protein partners which lock together via a spontaneous isopeptide bond). Here we first investigated the basis for this resilience, comparing alternative reactive peptide/protein pairs we engineered from Gram-positive bacteria. Both SnoopRing and PilinRing cyclization gave dramatic enzyme resilience, but SpyRing cyclization was the best. Differential scanning calorimetry for each ring showed that cyclization did not inhibit unfolding of the inserted β-lactamase. Cyclization conferred resilience even at 100 °C, where the cyclizing domains themselves were unfolded. Phytases hydrolyze phytic acid and improve dietary absorption of phosphate and essential metal ions, important for agriculture and with potential against human malnutrition. SpyRing phytase (PhyC) resisted aggregation and retained catalytic activity even following heating at 100 °C. In addition, SpyRing cyclization made it possible to purify phytase simply by heating the cell lysate, to drive aggregation of non-cyclized proteins. Cyclization via domains forming spontaneous isopeptide bonds is a general strategy to generate resilient enzymes and may extend the range of conditions for isolation and application of enzymes.

Original publication




Journal article


Sci Rep

Publication Date





6-Phytase, Adhesins, Bacterial, Bacillus subtilis, Catalysis, Cyclization, Escherichia coli, Hot Temperature, Protein Structure, Tertiary, Streptococcus pneumoniae, Streptococcus pyogenes, beta-Lactamases