Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizobia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.

Original publication

DOI

10.1016/j.tim.2006.02.005

Type

Journal article

Journal

Trends Microbiol

Publication Date

04/2006

Volume

14

Pages

161 - 168

Keywords

Amino Acids, Citric Acid Cycle, Fabaceae, Nitrogen Fixation, Rhizobium, Symbiosis