Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Wood density is considered as one of the most important wood properties which affects the properties and value of both fibrous and solid wood products. The present study was intended for evaluating the possibilities of improving wood quality and growth of poplar hybrids. Wood density components of individual growth rings (minimum and maximum wood density, average ring density) and growth traits (tree height, dbh, stem volume) were measured in four 10- and 12-year-old clonal trials of four poplar hybrids, Populus deltoides × P. nigra, P. trichocarpa × P. deltoides, P. maximowiczii × P. balsamifera, and P. balsamifera × P. nigra, as well as P. deltoides. Wood density components of individual growth rings were obtained from microdensitometeric profiles measured with a direct reading X-ray densitometer. Site had a moderately significant effect on wood density and a highly significant effect on tree growth. The hybrid effect was highly significant (P < 0.001) for most traits. Minimum, maximum and weighted wood densities were found to be under strong genetic control, with clonal repeatabilities varying between 0.45 and 0.81. The coefficient of genotypic variation (CVG) for wood density at individual sites ranged from 4.0 to 6.8%, whereas CVGfor dry fiber weight (mass) reached 32.8% with repeatabilities of up to 0.67. A small but significant (P = 0.028) hybrid × environment interaction was found for dry fiber weight. The highest ecological sensitivity was found for P. deltoides × P. nigra, with ecovalence reaching 32.3%. Clonal × environment interaction was significant for weighted, average, and minimum wood density. Significant negative genotypic correlations between stem volume and wood density ranged from -0.39 to -0.74. One possible strategy in tree breeding would be to maximize wood fiber production through selection for dry fiber weight. © 2006 Elsevier B.V. All rights reserved.

Original publication

DOI

10.1016/j.foreco.2006.09.082

Type

Journal article

Journal

Forest Ecology and Management

Publication Date

30/01/2007

Volume

238

Pages

92 - 106