Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

BACKGROUND: The sequencing and analysis of ESTs is for now the only practical approach for large-scale gene discovery and annotation in conifers because their very large genomes are unlikely to be sequenced in the near future. Our objective was to produce extensive collections of ESTs and cDNA clones to support manufacture of cDNA microarrays and gene discovery in white spruce (Picea glauca [Moench] Voss). RESULTS: We produced 16 cDNA libraries from different tissues and a variety of treatments, and partially sequenced 50,000 cDNA clones. High quality 3' and 5' reads were assembled into 16,578 consensus sequences, 45% of which represented full length inserts. Consensus sequences derived from 5' and 3' reads of the same cDNA clone were linked to define 14,471 transcripts. A large proportion (84%) of the spruce sequences matched a pine sequence, but only 68% of the spruce transcripts had homologs in Arabidopsis or rice. Nearly all the sequences that matched the Populus trichocarpa genome (the only sequenced tree genome) also matched rice or Arabidopsis genomes. We used several sequence similarity search approaches for assignment of putative functions, including blast searches against general and specialized databases (transcription factors, cell wall related proteins), Gene Ontology term assignation and Hidden Markov Model searches against PFAM protein families and domains. In total, 70% of the spruce transcripts displayed matches to proteins of known or unknown function in the Uniref100 database (blastx e-value < 1e-10). We identified multigenic families that appeared larger in spruce than in the Arabidopsis or rice genomes. Detailed analysis of translationally controlled tumour proteins and S-adenosylmethionine synthetase families confirmed a twofold size difference. Sequences and annotations were organized in a dedicated database, SpruceDB. Several search tools were developed to mine the data either based on their occurrence in the cDNA libraries or on functional annotations. CONCLUSION: This report illustrates specific approaches for large-scale gene discovery and annotation in an organism that is very distantly related to any of the fully sequenced genomes. The ArboreaSet sequences and cDNA clones represent a valuable resource for investigations ranging from plant comparative genomics to applied conifer genetics.

Original publication

DOI

10.1186/1471-2164-6-144

Type

Journal article

Journal

BMC Genomics

Publication Date

19/10/2005

Volume

6

Keywords

Arabidopsis, Cell Wall, Cluster Analysis, Contig Mapping, Cytoskeleton, DNA, Complementary, Databases as Topic, Databases, Genetic, Expressed Sequence Tags, Gene Expression Regulation, Plant, Gene Library, Genes, Plant, Genome, Plant, Genomics, Multigene Family, Oryza, Picea, RNA, Messenger, Software