Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

NEW FINDINGS: What is the topic of this review? This review is principally concerned with results from studies of the pulmonary vasculature in humans, particularly in relation to hypoxia and rare diseases that affect oxygen sensing. What advances does it highlight? This review highlights the degree to which the hypoxia-inducible factor (HIF) transcription system influences human pulmonary vascular responses to hypoxia. Upregulation of the HIF pathway augments hypoxic pulmonary vasoconstriction, while alterations to the pathway found in Tibetans are associated with suppression of the progressive increase in pulmonary artery pressure with sustained hypoxia. It also highlights the potential importance of iron, which modulates the HIF pathway, in modifying the pulmonary vascular response to hypoxia. The human pulmonary circulation loses its natural distensibility during sustained hypoxia, leading to pulmonary arterial hypertension and a much higher workload for the right ventricle. The hypoxia-inducible factor (HIF) pathway is implicated in this pulmonary vascular response to continued hypoxia by animal studies, and additionally, by rare human diseases where the pathway is upregulated. However, there are no known human genetic diseases downregulating HIF. Tibetans, though, demonstrate blunted pulmonary vascular responses to sustained hypoxia. This seems to be accounted for by an altered HIF pathway as a consequence of natural selection over a period of many thousands of years lived at high altitude. In addition to genetic differences, iron is another important modulator of HIF pathway function. Experimental work in humans demonstrates that manipulation of iron stores can influence the behaviour of the pulmonary circulation during hypoxia, in ways analogous to that seen in Tibetans and patients with rare diseases that affect oxygen sensing. The importance of physiological differences in iron bioavailability in modulating hypoxic pulmonary vasoconstriction in health and disease is yet to be established.

Original publication

DOI

10.1113/expphysiol.2014.080507

Type

Journal article

Journal

Exp Physiol

Publication Date

11/2015

Volume

100

Pages

1233 - 1241

Keywords

Altitude, Arterial Pressure, Ethnic Groups, Humans, Hypoxia, Hypoxia-Inducible Factor 1, alpha Subunit, Iron, Lung, Oxygen, Tibet, Up-Regulation, Vasoconstriction