Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The disproportionately large involvement of the X-chromosome in the isolation of closely related species (the large-X effect) has been reported for many animals, where X-linked genes are mostly hemizygous in the heterogametic sex. The expression of deleterious recessive mutations is thought to drive the frequent involvement of the X-chromosome in hybrid sterility, as well as to reduce interspecific gene flow for X-linked genes. Here, we evaluate the role of the X-chromosome in the speciation of two closely related plant species - the white and red campions (Silene latifolia and S. dioica) - that hybridize widely across Europe. The two species evolved separate sexes and sex chromosomes relatively recently (~10(7)  years), and unlike most animal species, most X-linked genes have intact Y-linked homologs. We demonstrate that the X-linked genes show a very small and insignificant amount of interspecific gene flow, while gene flow involving autosomal loci is significant and sufficient to homogenize the gene pools of the two species. These findings are consistent with the hypothesis of the large-X effect in Silene and comprise the first report of this effect in plants. Nonhemizygosity of many X-linked genes in Silene males indicates that exposure of recessive mutations to selection may not be essential for the occurrence of the large-X effect. Several possible causes of the large-X effect in Silene are discussed.

Original publication

DOI

10.1111/mec.13427

Type

Journal article

Journal

Mol Ecol

Publication Date

06/2016

Volume

25

Pages

2609 - 2619

Keywords

Silene, gene flow, large-X effect, sex chromosomes, speciation, Chromosomes, Plant, Evolution, Molecular, Gene Flow, Gene Pool, Genes, Plant, Genes, X-Linked, Hybridization, Genetic, Polymorphism, Single Nucleotide, RNA, Plant, Sex Chromosomes, Silene