Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

High-resolution blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) at the sub-millimeter scale has become feasible with recent advances in MR technology. In principle, this would enable the study of layered cortical circuits, one of the fundaments of cortical computation. However, the spatial layout of cortical blood supply may become an important confound at such high resolution. In particular, venous blood draining back to the cortical surface perpendicularly to the layered structure is expected to influence the measured responses in different layers. Here, we present an extension of a hemodynamic model commonly used for analyzing fMRI data (in dynamic causal models or biophysical network models) that accounts for such blood draining effects by coupling local hemodynamics across layers. We illustrate the properties of the model and its inversion by a series of simulations and show that it successfully captures layered fMRI data obtained during a simple visual experiment. We conclude that for future studies of the dynamics of layered neuronal circuits with high-resolution fMRI, it will be pivotal to include effects of blood draining, particularly when trying to infer on the layer-specific connections in cortex--a theme of key relevance for brain disorders like schizophrenia and for theories of brain function such as predictive coding.

Original publication

DOI

10.1016/j.neuroimage.2015.10.025

Type

Journal article

Journal

Neuroimage

Publication Date

15/01/2016

Volume

125

Pages

556 - 570

Keywords

Bayesian model comparison, Cortical layers, Dynamic causal modeling, Predictive coding, fMRI, Algorithms, Brain, Brain Mapping, Hemodynamics, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Models, Neurological, Models, Theoretical, Oxygen