Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

An acid phosphatase from a heavy-metal-accumulating strain of a Citrobacter sp. was resolved into two forms on the basis of their nonbinding (phosphatase I) or binding (phosphatase II) behaviour on the cation-exchange resin SP-Sephadex C50. Both holoenzymes had a molecular mass of 103-108 kDa as determined by Superose Q-6 column chromatography in the presence of 150 mM KCl and a subunit molecular mass of 27 kDa as determined by SDS-PAGE; the enzyme was tetrameric. Both enzymes had a pI approximately 9.0 and were immunologically cross-reactive. There were minor differences in amino acid composition and in peptide maps following tryptic digest. The pH optimum for phosphatases I and II was 5.5 and 6.25, respectively; phosphatase II alone retained activity at pH values up to 9.0. Phosphatase I was more resistant to mechanical shear, gamma-irradiation, high temperature, and toxins (F- and formaldehyde). Glycerol increased the thermostability of both enzymes, particularly the more thermosensitive phosphatase II. Phosphatase II had a lower Km and a lower Vmax for glycerol 2-phosphate hydrolysis. The production of enzyme isoforms is a phenomenon similar to that described previously for the alkaline phosphatase of Escherichia coli, where the isoforms relate to precursive and final processed forms of the enzyme. Acid phosphatase is physiologically distinct, with a role that is still obscure but that may relate to cellular stress responses.

Type

Journal article

Journal

Arch Microbiol

Publication Date

02/1998

Volume

169

Pages

166 - 173

Keywords

Acid Phosphatase, Citrobacter, Enzyme Stability, Glycerol, Isoelectric Point, Molecular Weight, Substrate Specificity