Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Centromere positioning in human cell nuclei was traced in non-cycling peripheral blood lymphocytes (G0) and in terminally differentiated monocytes, as well as in cycling phytohemagglutinin-stimulated lymphocytes, diploid lymphoblastoid cells, normal fibroblasts, and neuroblastoma SH-EP cells using immunostaining of kinetochores, confocal microscopy and three-dimensional image analysis. Cell cycle stages were identified for each individual cell by a combination of replication labeling with 5-bromo-2'-deoxyuridine and immunostaining of pKi67. We demonstrate that the behavior of centromeres is similar in all cell types studied: a large fraction of centromeres are in the nuclear interior during early G1; in late G1 and early S phase, centromeres shift to the nuclear periphery and fuse in clusters. Peripheral location and clustering of centromeres are most pronounced in non-cycling cells (G0) and terminally differentiated monocytes. In late S and G2, centromeres partially decluster and migrate towards the nuclear interior. In the rather flat nuclei of adherently growing fibroblasts and neuroblastoma cells, kinetochores showed asymmetrical distributions with preferential kinetochore location close either to the bottom side of the nucleus (adjacent to the growth surface) or to the nuclear upper side. This asymmetrical distribution of centromeres is considered to be a consequence of chromosome arrangement in anaphase rosettes.

Original publication

DOI

10.1007/s00412-004-0287-3

Type

Journal article

Journal

Chromosoma

Publication Date

06/2004

Volume

112

Pages

410 - 423

Keywords

Bromodeoxyuridine, Cell Cycle, Cell Differentiation, Cell Nucleus, Centromere, DNA Replication, Fibroblasts, Humans, Lymphocytes, Mitosis, Monocytes, Neuroblastoma