Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Remote sensing allows an animal to extend its morphology with appropriate conductive materials and sensors providing environmental feedback from spatially removed locations. For example, the sector web spider Zygiella x-notata uses a specialized thread as both a structural bridge and signal transmitter to monitor web vibrations from its retreat at the web perimeter. To unravel this model multifunctional system, we investigated Zygiella's signal thread structure with a range of techniques, including tensile testing, laser vibrometry, electron microscopy and behavioural analysis. We found that signal threads varied significantly in the number of filaments; a result of the spider adding a lifeline each time it runs along the bridge. Our mechanical property analysis suggests that while the structure varies, its normalized load does not. We propose that the signal thread represents a complex and fully integrated multifunctional structure where filaments can be added, thus increasing absolute load-bearing capacity while maintaining signal fidelity. We conclude that such structures may serve as inspiration for remote sensing design strategies.

Original publication

DOI

10.1098/rsif.2015.0633

Type

Journal article

Journal

J R Soc Interface

Publication Date

06/12/2015

Volume

12

Keywords

remote sensing, silk, spider, vibration, Animals, Behavior, Animal, Spiders