Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

A key question in collective behavior is how individual differences structure animal groups, affect the flow of information, and give some group members greater weight in decisions. Depending on what factors contribute to leadership, despotic decisions could either improve decision accuracy or interfere with swarm intelligence. The mechanisms behind leadership are therefore important for understanding its functional significance. In this study, we compared pigeons' relative influence over flock direction to their solo flight characteristics. A pigeon's degree of leadership was predicted by its ground speeds from earlier solo flights, but not by the straightness of its previous solo route. By testing the birds individually after a series of flock flights, we found that leaders had learned straighter homing routes than followers, as we would expect if followers attended less to the landscape and more to conspecifics. We repeated the experiment from three homing sites using multiple independent flocks and found individual consistency in leadership and speed. Our results suggest that the leadership hierarchies observed in previous studies could arise from differences in the birds' typical speeds. Rather than reflecting social preferences that optimize group decisions, leadership may be an inevitable consequence of heterogeneous flight characteristics within self-organized flocks. We also found that leaders learn faster and become better navigators, even if leadership is not initially due to navigational ability. The roles that individuals fall into during collective motion might therefore have far-reaching effects on how they learn about the environment and use social information.

Original publication

DOI

10.1016/j.cub.2015.10.044

Type

Journal article

Journal

Curr Biol

Publication Date

07/12/2015

Volume

25

Pages

3132 - 3137

Keywords

Animals, Columbidae, Female, Flight, Animal, Homing Behavior, Leadership, Learning, Male, Social Behavior