Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

There is increasing interest in imaging cadavers for noninvasive autopsies for research purposes. However, the temperature is well below that of in vivo imaging, and a variety of interesting 'cold brain' effects are observed. At lower temperatures conventional FLAIR sequences no longer produce dark cerebrospinal fluid (CSF); T(1) is reduced from about 4.0 sec in vivo to 1.7 sec at 1 degrees C. The diffusion coefficient (DC) of CSF is much reduced (from 3.1 10(-9) m(2)s(-1) in vivo to 1.1 at 1 degrees C). DC values therefore provide a noninvasive thermometer to measure brain core temperature to within 1.0 degrees C. In three cadavers DC values were 1.1-1.5 10(-9) m(2)s(-1), indicating brain core temperatures of 1-10 degrees C, consistent with external thermocouple measurements. An improved inversion time (TI(0)) can then be found for FLAIR. At 10 degrees C this Cold FLAIR sequence (TI(0) = 1.5 sec) gave black CSF. Expressions for CSF DC and T(1) as a function of temperature were produced. A measurement of CSF DC could be converted directly to temperature and the required TI(0) found. In vitro values of CSF DC were about 1% lower than that of water. Thus, FLAIR imaging can be optimized for cadaveric brains at low and unknown temperatures, thereby improving value for autopsy purposes and facilitating comparisons with in vivo imaging.

Original publication

DOI

10.1002/mrm.21456

Type

Journal article

Journal

Magn Reson Med

Publication Date

01/2008

Volume

59

Pages

190 - 195

Keywords

Autopsy, Body Temperature, Brain, Cadaver, Cerebrospinal Fluid, Humans, Magnetic Resonance Imaging, Postmortem Changes