Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The expression of genes within Salmonella Pathogenicity Islands 1 and 2 (SPI1, SPI2) is required to facilitate invasion and intracellular replication respectively of S. Typhimurium in host cell lines. Control of their expression is complex and occurs via a variety of factors operating at transcriptional and post-transcriptional levels in response to the environmental stimuli found within the host. Several of the factors that modulate SPI1 and SPI2 expression are involved in the redistribution or modification of RNA polymerase (RNAP) specificity. These factors include the bacterial alarmone, ppGpp, the alternative sigma factor, RpoS, and the RNAP accessory protein, DksA. In this report we show not only how these three factors modulate SPI1 and SPI2 expression but also how they contribute to the 'phased' expression of SPI1 and SPI2 during progress through late-log and stationary phase in aerobic rich broth culture conditions. In addition, we demonstrate that the expression of at least one SPI1-encoded protein, SipC is subject to DksA-dependent post-transcriptional control.

Original publication




Journal article


PLoS One

Publication Date





Bacterial Proteins, Gene Expression Regulation, Bacterial, Guanine Nucleotides, Membrane Proteins, Salmonella enterica, Salmonella typhimurium, Sigma Factor, Transcription, Genetic