Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We have used differential RNA-seq (dRNA-seq) to characterise the transcriptomic architecture of S. Typhimurium SL1344, and its dependence on the bacterial alarmone, guanosine tetraphosphate (ppGpp) during late stationary phase, (LSP). Under LSP conditions we were able to identify the transcriptional start sites (TSSs) for 53% of the S. Typhimurium open reading frames (ORFs) and discovered 282 candidate non-coding RNAs (ncRNAs). The mapping of LSP TSSs enabled a detailed comparison with a previous dRNA-seq study of the early stationary phase (ESP) transcriptional architecture of S. Typhimurium SL1344 and its dependence on ppGpp. For the purposes of this study, LSP was defined as an aerobic LB culture grown to a later optical density reading (OD600 = 3.6) compared to ESP (OD600 = 2.3). The precise nucleotide positions of the majority of S. Typhimurium TSSs at LSP agreed closely with those identified at ESP. However, the identification of TSSs at different positions, or where additional or fewer TSSs were found at LSP compared to ESP enabled the genome-wide categorisation of growth phase dependent changes in promoter structure, the first time such an analysis has been done on this scale. Comparison of the ppGpp-dependency LSP and ESP TSSs for mRNAs and ncRNAs revealed a similar breadth of ppGpp-activation and repression. However, we note several ncRNAs previously shown to be involved in virulence were highly ppGpp-dependent at LSP. Finally, although SPI1 was expressed at ESP, we found SPI1 was not as highly expressed at LSP, instead we observed elevated expression of SPI2 encoded genes. We therefore also report an analysis of SPI2 transcriptional architecture at LSP resulting in localisation of SsrB binding sites and identification of a previously unreported SPI2 TSS. We also show that ppGpp is required for nearly all of SPI2 expression at LSP as well as for expression of SPI1 at ESP.

Original publication

DOI

10.1371/journal.pone.0092690

Type

Journal article

Journal

PLoS One

Publication Date

2014

Volume

9

Keywords

Gene Expression Profiling, Guanosine Tetraphosphate, Molecular Sequence Data, Operon, Promoter Regions, Genetic, RNA, Antisense, RNA, Untranslated, Salmonella typhimurium, Sequence Analysis, RNA, Transcription Initiation Site