Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The alpha-actinin gene has a pair of alternatively spliced exons. The smooth muscle (SM) exon is repressed in most cell types by polypyrimidine tract binding protein (PTB). CELF (CUG-BP and ETR3-like factors) family proteins, splicing regulators whose activities are altered in myotonic dystrophy, were found to coordinately regulate selection of the two alpha-actinin exons. CUG-BP and ETR3 activated the SM exon, and along with CELF4 they were also able to repress splicing of the NM (nonmuscle) exon both in vivo and in vitro. Activation of SM exon splicing was associated with displacement of PTB from the polypyrimidine tract by binding of CUG-BP at adjacent sites. Our data provides direct evidence for the activity of CELF proteins as both activators and repressors of splicing within a single-model system of alternative splicing, and suggests a model whereby alpha-actinin alternative splicing is regulated by synergistic and antagonistic interactions between members of the CELF and PTB families.

Type

Journal article

Journal

RNA

Publication Date

04/2003

Volume

9

Pages

443 - 456

Keywords

Actinin, Alternative Splicing, Base Sequence, CELF Proteins, CELF1 Protein, Gene Expression Regulation, Humans, In Vitro Techniques, Molecular Sequence Data, Nerve Tissue Proteins, Polypyrimidine Tract-Binding Protein, RNA Precursors, RNA-Binding Proteins