Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Plastids, such as chloroplasts, are widely distributed endosymbiotic organelles in plants and algae. Apart from their well-known functions in photosynthesis, they have roles in processes as diverse as signal sensing, fruit ripening, and seed development. As most plastid proteins are produced in the cytosol, plastids have developed dedicated translocon machineries for protein import, comprising the TOC (translocon at the outer envelope membrane of chloroplasts) and TIC (translocon at the inner envelope membrane of chloroplasts) complexes. Multiple lines of evidence reveal that protein import via the TOC complex is actively regulated, based on the specific interplay between distinct receptor isoforms and diverse client proteins. In this review, we summarize recent advances in our understanding of protein import regulation, particularly in relation to control by the ubiquitin-proteasome system (UPS), and how such regulation changes plastid development. The diversity of plastid import receptors (and of corresponding preprotein substrates) has a determining role in plastid differentiation and interconversion. The controllable turnover of TOC components by the UPS influences the developmental fate of plastids, which is fundamentally linked to plant development. Understanding the mechanisms by which plastid protein import is controlled is critical to the development of breakthrough approaches to increase the yield, quality and stress tolerance of important crop plants, which are highly dependent on plastid development. This article is part of a Special Issue entitled: Chloroplast Biogenesis.

Original publication

DOI

10.1016/j.bbabio.2015.02.017

Type

Journal article

Journal

Biochim Biophys Acta

Publication Date

09/2015

Volume

1847

Pages

939 - 948

Keywords

Chloroplast, Plastid, Proteasome, Protein degradation, Protein transport, Ubiquitin, Chloroplast Proteins, Plastids, Proteasome Endopeptidase Complex, Protein Transport, Ubiquitin, Ubiquitination