Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Adaptive deep brain stimulation (aDBS) has the potential to improve the treatment of Parkinson's disease by optimizing stimulation in real time according to fluctuating disease and medication state. In the present realization of adaptive DBS we record and stimulate from the DBS electrodes implanted in the subthalamic nucleus of patients with Parkinson's disease in the early post-operative period. Local field potentials are analogue filtered between 3 and 47 Hz before being passed to a data acquisition unit where they are digitally filtered again around the patient specific beta peak, rectified and smoothed to give an online reading of the beta amplitude. A threshold for beta amplitude is set heuristically, which, if crossed, passes a trigger signal to the stimulator. The stimulator then ramps up stimulation to a pre-determined clinically effective voltage over 250 msec and continues to stimulate until the beta amplitude again falls down below threshold. Stimulation continues in this manner with brief episodes of ramped DBS during periods of heightened beta power. Clinical efficacy is assessed after a minimum period of stabilization (5 min) through the unblinded and blinded video assessment of motor function using a selection of scores from the Unified Parkinson's Rating Scale (UPDRS). Recent work has demonstrated a reduction in power consumption with aDBS as well as an improvement in clinical scores compared to conventional DBS. Chronic aDBS could now be trialed in Parkinsonism. © JoVE 2006-2014. All Rights Reserved.

Original publication

DOI

10.3791/51403

Type

Journal article

Journal

Journal of Visualized Experiments

Publication Date

16/07/2014