Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The correction of intensity non-uniformity (INU) in magnetic resonance (MR) images is extremely important to ensure both within-subject and across-subject reliability. Here we tackled the problem of objectively comparing INU correction techniques for T1-weighted images, which are the most commonly used in structural brain imaging. We focused our investigations on the methods integrated in widely used software packages for MR data analysis: FreeSurfer, BrainVoyager, SPM and FSL. We used simulated data to assess the INU fields reconstructed by those methods for controlled inhomogeneity magnitudes and noise levels. For each method, we evaluated a wide range of input parameters and defined an enhanced configuration associated with best reconstruction performance. By comparing enhanced and default configurations, we found that the former often provide much more accurate results. Accordingly, we used enhanced configurations for a more objective comparison between methods. For different levels of INU magnitude and noise, SPM and FSL, which integrate INU correction with brain segmentation, generally outperformed FreeSurfer and BrainVoyager, whose methods are exclusively dedicated to INU correction. Nonetheless, accurate INU field reconstructions can be obtained with FreeSurfer on images with low noise and with BrainVoyager for slow and smooth inhomogeneity profiles. Our study may prove helpful for an accurate selection of the INU correction method to be used based on the characteristics of actual MR data.

Original publication




Journal article



Publication Date





5 - 21


Bias field, Brain structure, Comparative study, Intensity non-uniformity, Magnetic resonance imaging, Algorithms, Artifacts, Brain, Computer Simulation, Humans, Image Processing, Computer-Assisted, Magnetic Resonance Imaging, Models, Neurological, Reproducibility of Results, Signal Processing, Computer-Assisted, Software