Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2015 Elsevier Ltd. For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.

Original publication

DOI

10.1016/j.tim.2015.03.004

Type

Journal article

Journal

Trends in Microbiology

Publication Date

01/01/2015

Volume

23

Pages

247 - 256