Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

© 2015 Elsevier Inc. The rapid rates of viral evolution allow us to reconstruct the recent history of viruses in great detail. This feature, however, also results in rapid erosion of evolutionary signal within viral molecular data, impeding studies of their deep history. Thus, the further back in time, the less accurate the inference becomes. Furthermore, reconstructing complex histories of transmission can be challenging, especially where extinct viral lineages are concerned. This problem has been partially solved by the discovery of viruses embedded in host genomes, known as endogenous viral elements (EVEs). Some of these endogenous viruses are derived from ancient relatives of extant viruses, allowing us to better examine ancient viral host range, geographical distribution and transmission routes. Moreover, our knowledge of viral evolutionary timescales and rate dynamics has also been greatly improved by their discovery, thereby bridging the gap between recent and ancient viral evolution.

Original publication

DOI

10.1016/j.virol.2015.02.011

Type

Journal article

Journal

Virology

Publication Date

01/05/2015

Volume

479-480

Pages

26 - 37