Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

We show that abrupt structural transitions can arise in functionally optimal networks, driven by small changes in the level of transport congestion. Our results offer an explanation as to why so many diverse species of network structure arise in nature (e.g., fungal systems) under essentially the same environmental conditions. Our findings are based on an exactly solvable model system which mimics a variety of biological and social networks. We then extend our analysis by introducing a renormalization scheme involving cost motifs, to describe analytically the average shortest path across multiple-ring-and-hub networks. As a consequence, we uncover a "skin effect" whereby the structure of the inner multi-ring core can cease to play any role in terms of determining the average shortest path across the network.

Original publication

DOI

10.1103/PhysRevE.74.026116

Type

Journal article

Journal

Phys Rev E Stat Nonlin Soft Matter Phys

Publication Date

08/2006

Volume

74