Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

There is great interest in blood-based markers of Alzheimer's disease (AD), especially in its pre-symptomatic stages. Therefore, we aimed to identify plasma proteins whose levels associate with potential markers of pre-symptomatic AD. We also aimed to characterise confounding by genetics and the effect of genetics on blood proteins in general. Panel-based proteomics was performed using SOMAscan on plasma samples from TwinsUK subjects who are asymptomatic for AD, measuring the level of 1129 proteins. Protein levels were compared with 10-year change in CANTAB-paired associates learning (PAL; n = 195), and regional brain volumes (n = 34). Replication of proteins associated with regional brain volumes was performed in 254 individuals from the AddNeuroMed cohort. Across all the proteins measured, genetic factors were found to explain ~26% of the variability in blood protein levels on average. The plasma level of the mitogen-activated protein kinase (MAPK) MAPKAPK5 protein was found to positively associate with the 10-year change in CANTAB-PAL in both the individual and twin difference context. The plasma level of protein MAP2K4 was found to suggestively associate negatively (Q < 0.1) with the volume of the left entorhinal cortex. Future studies will be needed to assess the specificity of MAPKAPK5 and MAP2K4 to eventual conversion to AD.

Original publication

DOI

10.1038/tp.2015.78

Type

Journal article

Journal

Transl Psychiatry

Publication Date

16/06/2015

Volume

5

Keywords

Aged, Alzheimer Disease, Asymptomatic Diseases, Biomarkers, Brain, Endophenotypes, Entorhinal Cortex, Female, Humans, Intracellular Signaling Peptides and Proteins, MAP Kinase Kinase 4, Male, Middle Aged, Neuropsychological Tests, Organ Size, Protein-Serine-Threonine Kinases, Twins