Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Friedreich's ataxia (FRDA) is the most common form of hereditary ataxia caused by recessive mutations in the FXN gene. Recent results have indicated the presence of different frataxin isoforms due to alternative gene expression mechanisms. Our previous studies demonstrated the advantages of using high-capacity herpes simplex virus type 1 (HSV-1) amplicon vectors containing the entire FXN genomic locus (iBAC-FXN) as a gene-delivery vehicle capable of ensuring physiologically-regulated and long-term persistence. Here we describe how expression from the 135 kb human FXN genomic locus produces the three frataxin isoforms both in cultured neuronal cells and also in vivo. Moreover, we also observed the correct expression of these frataxin isoforms in patient-derived cells after delivery of the iBAC-FXN. These results lend further support to the potential use of HSV-1 vectors containing entire genomic loci whose expression is mediated by complex transcriptional and posttranscriptional mechanisms for gene therapy applications.

Original publication

DOI

10.1016/j.ygeno.2015.05.006

Type

Journal article

Journal

Genomics

Publication Date

08/2015

Volume

106

Pages

76 - 82

Keywords

Bacterial artificial chromosomes, Frataxin, Friedreich's ataxia, Gene therapy, HSV-1 amplicons, Animals, Cell Line, Tumor, Cells, Cultured, Cerebellum, Chromosomes, Artificial, Bacterial, Friedreich Ataxia, Genetic Loci, Genetic Vectors, Genome, Human, Herpesvirus 1, Human, Humans, Iron-Binding Proteins, Male, Mice, Mice, Inbred C57BL, Protein Isoforms