SERT and uncertainty: serotonin transporter expression influences information processing biases for ambiguous aversive cues in mice.
McHugh SB., Barkus C., Lima J., Glover LR., Sharp T., Bannerman DM.
The long allele variant of the serotonin transporter (SERT, 5-HTT) gene-linked polymorphic region (5-HTTLPR) is associated with higher levels of 5-HTT expression and reduced risk of developing affective disorders. However, little is known about the mechanisms underlying this protective effect. One hypothesis is that 5-HTT expression influences aversive information processing, with reduced negative cognitive bias present in those with higher 5-HTT expression. Here we investigated this hypothesis using genetically-modified mice and a novel aversive learning paradigm. Mice with high levels of 5-HTT expression (5-HTT over-expressing, 5-HTTOE mice) and wild-type mice were trained to discriminate between three distinct auditory cues: one cue predicted footshock on all trials (CS+); a second cue predicted the absence of footshock (CS-); and a third cue predicted footshock on 20% of trials (CS20%), and was therefore ambiguous. Wild-type mice exhibited equivalently high levels of fear to the CS+ and CS20% and minimal fear to the CS-. In contrast, 5-HTTOE mice exhibited high levels of fear to the CS+ but minimal fear to the CS- and the CS20%. This selective reduction in fear to ambiguous aversive cues suggests that increased 5-HTT expression reduces negative cognitive bias for stimuli with uncertain outcomes.