Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

©, 2015 Agricultural Institute of Canada, All rights reserved. The environmental impacts of switchgrass production for bioenergy could be reduced through the use of biofertilizers rather than mineral fertilizers and through soil amendment with biochar. The objectives of this study were: (1) to assess the impact of biochar and biofertilizer on switchgrass (Panicum virgatum L.) yield and parameters related to carbon dynamics, (2) to correlate carbon parameters with soil physico-chemical properties over the first two growing seasons, and (3) to develop a C budget. A complete randomized block design was installed in a sandy loam with split plot treatment design, the main plots receiving 0 or 10 t ha -1 of biochar and the sub-plots receiving no fertilization, mineral N fertilization, or biofertilizers. Biofertilizers had no significant impact on plant and soil. Biochar increased yield relative to the control treatment by about 10% during the first year and root biomass by up to 50% after 2 yr (P > .1). Mineral N fertilization also increased yield resulting in higher plant C sequestration after 2 yr. Biochar increased CO 2 soil concentration (CO 2-soil ) by up to 50% but its impact on CO 2 emission flux (CO 2 -flux) changed over time. The impact of mineral fertilization on CO 2-flux also varied with time. Soil CO 2 dynamics was mostly influenced by temperature, N and water content. Biochar and fertilization treatments showed interactions on some plant and soil parameters. The highest C sequestration budget was obtained with a combination of biochar and mineral N fertilization. The equivalent of about one-third of the increase in soil C content associated with biochar treatments was respired away by soil microorganisms. Nearly one-fourth of C sequestered by plants remained in or at the soil surface (root and crop residues).

Original publication

DOI

10.4141/CJSS-2014-042

Type

Journal article

Journal

Canadian Journal of Soil Science

Publication Date

01/01/2015

Volume

95

Pages

1 - 13