Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Although originally cloned from rat brain, the P2X7 receptor has only recently been localized in neurones, and functional responses mediated by these neuronal P2X7 receptors (P2X7 R) are largely unknown. Here we studied the effect of P2X7 R activation on the release of neurotransmitters from superfused rat hippocampal slices. ATP (1-30 mm) and other ATP analogues elicited concentration-dependent [3 H]GABA outflow, with the following rank order of potency: benzoylbenzoylATP (BzATP) > ATP > ADP. PPADS, the non-selective P2-receptor antagonist (3-30 microm), Brilliant blue G (1-100 nm) the P2X7 -selective antagonist and Zn2+ (0.1-30 microm) inhibited, whereas lack of Mg2+ potentiated the response by ATP. In situ hybridization revealed that P2X7 R mRNA is expressed in the neurones of the cell body layers in the hippocampus. P2X7 R immunoreactivity was found in excitatory synaptic terminals in CA1 and CA3 region targeting the dendrites of pyramidal cells and parvalbumin labelled structures. ATP (3-30 microm) and BzATP (0.6-6 microm) elicited concentration-dependent [14 C]glutamate efflux, and blockade of the kainate receptor-mediated transmission by CNQX (10-100 microm) and gadolinium (100 microm), decreased ATP evoked [3 H]GABA efflux. The Na+ channel blocker TTX (1 microm), low temperature (12 degrees C), and the GABA uptake blocker nipecotic acid (1 mm) prevented ATP-induced [3 H]GABA efflux. Brilliant blue G and PPADS also reduced electrical field stimulation-induced [3 H]GABA efflux. In conclusion, P2X7 Rs are localized to the excitatory terminals in the hippocampus, and their activation regulates the release of glutamate and GABA from themselves and from their target cells.

Type

Journal article

Journal

J Neurochem

Publication Date

06/2002

Volume

81

Pages

1196 - 1211

Keywords

Adenosine Triphosphate, Animals, Excitatory Amino Acids, Hippocampus, Immunohistochemistry, In Vitro Techniques, Male, Nerve Endings, Neurons, Neurotransmitter Agents, Rats, Receptors, Purinergic P2, Receptors, Purinergic P2X7, Subcellular Fractions, gamma-Aminobutyric Acid