Bradykinin, but not muscarinic, inhibition of M-current in rat sympathetic ganglion neurons involves phospholipase C-beta 4.
Haley JE., Abogadie FC., Fernandez-Fernandez JM., Dayrell M., Vallis Y., Buckley NJ., Brown DA.
Rat superior cervical ganglion (SCG) neurons express low-threshold noninactivating M-type potassium channels (I(K(M))), which can be inhibited by activation of M(1) muscarinic receptors (M(1) mAChR) and bradykinin (BK) B(2) receptors. Inhibition by the M(1) mAChR agonist oxotremorine methiodide (Oxo-M) is mediated, at least in part, by the pertussis toxin-insensitive G-protein Galpha(q) (Caulfield et al., 1994; Haley et al., 1998a), whereas BK inhibition involves Galpha(q) and/or Galpha(11) (Jones et al., 1995). Galpha(q) and Galpha(11) can stimulate phospholipase C-beta (PLC-beta), raising the possibility that PLC is involved in I(K(M)) inhibition by Oxo-M and BK. RT-PCR and antibody staining confirmed the presence of PLC-beta1, -beta2, -beta3, and -beta4 in rat SCG. We have tested the role of two PLC isoforms (PLC-beta1 and PLC-beta4) using antisense-expression constructs. Antisense constructs, consisting of the cytomegalovirus promoter driving antisense cRNA corresponding to the 3'-untranslated regions of PLC-beta1 and PLC-beta4, were injected into the nucleus of dissociated SCG neurons. Injected cells showed reduced antibody staining for the relevant PLC-beta isoform when compared to uninjected cells 48 hr later. BK inhibition of I(K(M)) was significantly reduced 48 hr after injection of the PLC-beta4, but not the PLC-beta1, antisense-encoding plasmid. Neither PLC-beta antisense altered M(1) mAChR inhibition by Oxo-M. These data support the conclusion of Cruzblanca et al. (1998) that BK, but not M(1) mAChR, inhibition of I(K(M)) involves PLC and extends this finding by indicating that PLC-beta4 is involved.