Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Myasthenia gravis (MG) is an autoimmune disorder caused by autoantibodies targeting proteins expressed at the neuromuscular junction (NMJ). In most cases the targets are acetylcholine receptor (AChR), muscle-specific tyrosine kinase (MuSK), or occasionally low-density lipoprotein receptor-related protein 4 (LRP4), but there is still a group of patients, often called seronegative MG (SNMG), with unknown antibody targets. One potential target is collagen Q (COLQ), which is restricted to the NMJ and is crucial for anchoring the NMJ-specific form of acetylcholinesterase (AChE). 415 serum samples with a clinical diagnosis of MG and 43 control samples were screened for the presence of COLQ autoantibodies using a cell-based assay (CBA) with HEK293 cells overexpressing COLQ at the cell surface. COLQ antibodies were detected in 12/415 MG sera and in one/43 control samples. Five of the COLQ-Ab+individuals were also positive for AChR-Abs and 2 for MuSK-Abs. Although the COLQ antibodies were only present at low frequency, and did not differ significantly from the small control cohort, further studies could address whether they modify the clinical presentation or the benefits of anti-cholinesterase therapy.

Original publication




Journal article


J Neurol Sci

Publication Date





241 - 244


Autoantibodies, Cell-based assay (CBA), Collagen Q (COLQ), Myasthenia gravis (MG), Neuroimmunology, Neuromuscular junction (NMJ), Acetylcholinesterase, Adolescent, Adult, Aged, Autoantibodies, Biological Assay, Child, Collagen, Female, HEK293 Cells, Humans, Middle Aged, Muscle Proteins, Myasthenia Gravis, Young Adult