Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

The microscopic hydration of the ceramide headgroup has been determined using a combination of experimental-both NMR and neutron diffraction techniques and computational techniques-empirical potential structure refinement (EPSR) and molecular dynamics (MD). The addition of water to ceramide in chloroform solutions disrupts the chloroform solvation of the ceramide headgroup, and the water forms distinct pockets of density. Specifically, water is observed to preferentially hydrate the two hydroxyl groups and the carbonyl oxygen over the amide NH motif. Further assessment of the location and orientation of the water molecules bound to the ceramide headgroup makes it clear that the strongly solvated carbonyl moiety of the amide bond creates an anchor from which water molecules can bridge via hydrogen bonding interactions to the hydroxyl groups. Moreover, a significant difference in the hydration of the two hydroxyl groups indicates that water molecules are associated with the headgroup in such a way that they bridge between the carbonyl motif and the nearest neighbor hydroxyl group.

Original publication

DOI

10.1021/jp5107789

Type

Journal article

Journal

J Phys Chem B

Publication Date

08/01/2015

Volume

119

Pages

128 - 139

Keywords

Ceramides, Chloroform, Magnetic Resonance Spectroscopy, Molecular Dynamics Simulation, Neutron Diffraction, Solubility, Solutions, Water