Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Epidermal cells in the root of Arabidopsis seedling differentiate either as hair or non-hair cells, while in the hypocotyl they become either stomatal or elongated cells. WEREWOLF (WER) and GLABRA2 (GL2) are positive regulators of non-hair and elongated cell development. CAPRICE (CPC) is a positive regulator of hair cell development in the root. We show that WER, GL2 and CPC are expressed and active during the stages of embryogenesis when the pattern of cells in the epidermis of the root-hypocotyl axis forms. GL2 is first expressed in the future epidermis in the heart stage embryo and its expression is progressively restricted to those cells that will acquire a non-hair identity in the transition between torpedo and mature stage. The expression of GL2 at the heart stage requires WER function. WER and CPC are transiently expressed throughout the root epidermal layer in the torpedo stage embryo when the cell-specific pattern of GL2 expression is being established in the epidermis. We also show that WER positively regulates CPC transcription and GL2 negatively regulates WER transcription in the mature embryo. We propose that the restriction of GL2 to the future non-hair cells in the root epidermis can be correlated with the activities of WER and CPC during torpedo stage. In the embryonic hypocotyl we show that WER controls GL2 expression. We also provide evidence indicating that CPC may also regulate GL2 expression in the hypocotyl.

Type

Journal article

Journal

Development

Publication Date

07/2003

Volume

130

Pages

2893 - 2901

Keywords

Arabidopsis, Arabidopsis Proteins, Cell Differentiation, DNA-Binding Proteins, Enhancer Elements, Genetic, Gene Expression Regulation, Developmental, Homeodomain Proteins, In Situ Hybridization, Models, Biological, Morphogenesis, Plant Epidermis, Plant Proteins, Proto-Oncogene Proteins c-myb, RNA, Messenger, Recombinant Fusion Proteins, Seedlings, Transcription, Genetic