Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

The transactive response DNA binding protein (TDP-43) is a major component of the characteristic neuronal cytoplasmic inclusions seen in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Furthermore, pathogenic mutations in the gene encoding TDP-43, TARDBP, are found in sporadic and familial ALS cases. To study the molecular mechanisms of cellular toxicity due to TDP-43 mutations we generated a novel in vitro cellular model using a fluorescently tagged human genomic TARDBP locus carrying one of two ALS-associated mutations, A382T or M337V, which were used to generate site-specific bacterial artificial chromosome (BAC) human stable cell lines and BAC transgenic mice. In cell lines and primary motor neurons in culture, TDP-M337V mislocalized to the cytoplasm more frequently than wild-type TDP (wt-TDP) and TDP-A382T, an effect potentiated by oxidative stress. Expression of mutant TDP-M337V correlated with increased apoptosis detected by cleaved caspase-3 staining. Cells expressing mislocalized TDP-M337V spontaneously developed cytoplasmic aggregates, while for TDP-A382T aggregates were only revealed after endoplasmic reticulum (ER) stress induced by the calcium-modifying drug thapsigargin. Lowering Ca(2+) concentration in the ER of wt-TDP cells partially recapitulated the effect of pathogenic mutations by increasing TDP-43 cytoplasmic mislocalization, suggesting Ca(2+) dysregulation as a potential mediator of pathology through alterations in Bcl-2 protein levels. Ca(2+) signaling from the ER was impaired in immortalized cells and primary neurons carrying TDP-43 mutations, with a 50% reduction in the levels of luminal ER Ca(2+) stores content and delayed Ca(2+) release compared with cells carrying wt-TDP. The deficits in Ca(2+) release in human cells correlated with the upregulation of Bcl-2 and siRNA-mediated knockdown of Bcl-2 restored the amplitude of Ca(2+) oscillations in TDP-M337V cells. These results suggest that TDP-43 pathogenic mutations elicit cytoplasmic mislocalization of TDP-43 and Bcl-2 mediated ER Ca(2+) signaling dysregulation.

Original publication




Journal article


Neurobiol Dis

Publication Date





64 - 77


Bcl-2, Ca(2+) dysregulation, Motor neurons, TDP-43, Animals, Apoptosis, Calcium, Caspase 3, Cells, Cultured, Chromosomes, Artificial, Bacterial, Cytoplasm, DNA-Binding Proteins, Endoplasmic Reticulum, HEK293 Cells, Humans, Mice, Transgenic, Motor Neurons, Mutation, Missense, Oxidative Stress, Proto-Oncogene Proteins c-bcl-2, Spinal Cord