Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Microbes produce many compounds that are costly to a focal cell but promote the survival and reproduction of neighboring cells. This observation has led to the suggestion that microbial strains and species will commonly cooperate by exchanging compounds. Here, we examine this idea with an ecoevolutionary model where microbes make multiple secretions, which can be exchanged among genotypes. We show that cooperation between genotypes only evolves under specific demographic regimes characterized by intermediate genetic mixing. The key constraint on cooperative exchanges is a loss of autonomy: strains become reliant on complementary genotypes that may not be reliably encountered. Moreover, the form of cooperation that we observe arises through mutual exploitation that is related to cheating and "Black Queen" evolution for a single secretion. A major corollary is that the evolution of cooperative exchanges reduces community productivity relative to an autonomous strain that makes everything it needs. This prediction finds support in recent work from synthetic communities. Overall, our work suggests that natural selection will often limit cooperative exchanges in microbial communities and that, when exchanges do occur, they can be an inefficient solution to group living.

Original publication

DOI

10.1073/pnas.1412673111

Type

Journal article

Journal

Proc Natl Acad Sci U S A

Publication Date

16/12/2014

Volume

111

Pages

17941 - 17946

Keywords

Black Queen evolution, cooperation/exploitation, ecoevolutionary model, genetic mixing, microbial communities, Biological Evolution, Ecosystem, Microbial Interactions, Models, Biological, Selection, Genetic, Species Specificity