Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Transgenic mouse models expressing mutant superoxide dismutase 1 (SOD1) have been critical in furthering our understanding of amyotrophic lateral sclerosis (ALS). However, such models generally overexpress the mutant protein, which may give rise to phenotypes not directly relevant to the disorder. Here, we have analysed a novel mouse model that has a point mutation in the endogenous mouse Sod1 gene; this mutation is identical to a pathological change in human familial ALS (fALS) which results in a D83G change in SOD1 protein. Homozgous Sod1(D83G/D83G) mice develop progressive degeneration of lower (LMN) and upper motor neurons, likely due to the same unknown toxic gain of function as occurs in human fALS cases, but intriguingly LMN cell death appears to stop in early adulthood and the mice do not become paralyzed. The D83 residue coordinates zinc binding, and the D83G mutation results in loss of dismutase activity and SOD1 protein instability. As a result, Sod1(D83G/D83G) mice also phenocopy the distal axonopathy and hepatocellular carcinoma found in Sod1 null mice (Sod1(-/-)). These unique mice allow us to further our understanding of ALS by separating the central motor neuron body degeneration and the peripheral effects from a fALS mutation expressed at endogenous levels.

Original publication

DOI

10.1093/hmg/ddu605

Type

Journal article

Journal

Hum Mol Genet

Publication Date

01/04/2015

Volume

24

Pages

1883 - 1897

Keywords

Amyotrophic Lateral Sclerosis, Animals, Disease Models, Animal, Humans, Mice, Mice, Inbred C57BL, Motor Neurons, Mutation, Missense, Point Mutation, Superoxide Dismutase, Superoxide Dismutase-1