Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Bimanual movement involves a variety of coordinated functions, ranging from elementary patterns that are performed automatically to complex patterns that require practice to be performed skillfully. The neural dynamics accompanying these coordination patterns are complex and rapid. By means of electro- and magneto-encephalographic approaches, it has been possible to examine these dynamics during bimanual coordination with excellent temporal resolution, which complements other neuroimaging modalities with superb spatial resolution. This review focuses on EEG/MEG studies that unravel the processes involved in movement planning and execution, motor learning, and executive functions involved in task switching and dual tasking. Evidence is presented for a spatio-temporal reorganization of the neural networks within and between hemispheres to meet increased task difficulty demands, induced or spontaneous switches in coordination mode, or training-induced neuroplastic modulation in coordination dynamics. Future theoretical developments will benefit from the integration of research techniques unraveling neural activity at different time scales. Ultimately this work will contribute to a better understanding of how the human brain orchestrates complex behavior via the implementation of inter- and intra-hemispheric coordination networks.

Original publication

DOI

10.1016/j.neubiorev.2014.10.003

Type

Journal article

Journal

Neurosci Biobehav Rev

Publication Date

11/2014

Volume

47

Pages

614 - 635

Keywords

Brain, Brain Mapping, Electroencephalography, Evoked Potentials, Functional Laterality, Humans, Psychomotor Performance