Cookies on this website

We use cookies to ensure that we give you the best experience on our website. If you click 'Accept all cookies' we'll assume that you are happy to receive all cookies and you won't see this message again. If you click 'Reject all non-essential cookies' only necessary cookies providing core functionality such as security, network management, and accessibility will be enabled. Click 'Find out more' for information on how to change your cookie settings.

Gene flow occurs predominantly via pollen in angiosperms, leading to stronger population subdivision for maternally inherited markers, relative to paternally or biparentally inherited genes. In contrast to this trend, population subdivision within Silene latifolia and S. dioica, as well as subdivision between the two species, is substantially lower in maternally inherited chloroplast genes compared to paternally inherited Y-linked genes. A significant frequency spectrum bias toward rare polymorphisms and a significant loss of polymorphism in chloroplast genes compared to Y-linked and autosomal genes suggest that intra- and inter-specific subdivision in the chloroplast DNA may have been eroded by a selective sweep that has crossed the S. latifolia and S. dioica species boundary.

Original publication




Journal article



Publication Date





1239 - 1247


Base Sequence, DNA, Chloroplast, Genes, Plant, Genes, Y-Linked, Genetics, Population, Molecular Sequence Data, Polymorphism, Genetic, Silene, Species Specificity